чётная функция

чётная функция
funzione pari

Dictionnaire technique russo-italien. 2013.

Игры ⚽ Поможем написать реферат

Смотреть что такое "чётная функция" в других словарях:

  • Нечётная функция — f(x) = x  пример нечётной функции. f(x) = x2  пример чётной функции. f(x) = x3 …   Википедия

  • Чётная функция — f(x) = x  пример нечётной функции. f(x) = x2  пример чётной функции. f(x) = x3 …   Википедия

  • чётная функция — lyginė funkcija statusas T sritis fizika atitikmenys: angl. even function vok. gerade Funktion, f rus. чётная функция, f pranc. fonction paire, f …   Fizikos terminų žodynas

  • нечётная функция — nelyginė funkcija statusas T sritis fizika atitikmenys: angl. odd function vok. ungerade Funktion, f rus. нечётная функция, f pranc. fonction impaire, f …   Fizikos terminų žodynas

  • нечётная функция — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN odd function …   Справочник технического переводчика

  • Нечётная функция —         функция, удовлетворяющая равенству f ( x) = f (x). См. Чётные и нечётные функции …   Большая советская энциклопедия

  • НЕЧЁТНАЯ ФУНКЦИЯ — функция, удовлетворяющая равенству f( x) = f(x) при всех х …   Естествознание. Энциклопедический словарь

  • нечётная функция — функция, удовлетворяющая равенству f(–х) =  f(х) при всех х. * * * НЕЧЕТНАЯ ФУНКЦИЯ НЕЧЕТНАЯ ФУНКЦИЯ, функция, удовлетворяющая равенству f( x) = f(x) при всех х …   Энциклопедический словарь

  • чётная функция — функция, удовлетворяющая равенству f( х) = f(х) при всех х. * * * ЧЕТНАЯ ФУНКЦИЯ ЧЕТНАЯ ФУНКЦИЯ, функция, удовлетворяющая равенству f( x) = f(x) при всех x …   Энциклопедический словарь

  • Функция Доусона — вблизи начала координат …   Википедия

  • Функция Хевисайда — Единичная функция Хевисайда Функция Хевисайда (единичная ступенчатая функция, функция единичного скачка, включенная единица)  кусочно постоянная функция, равная нулю для отрицательных значений аргумента и единице  для пол …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»